smooth_imagesmooth_imageSmoothImageSmoothImagesmooth_image (算子名称)

名称

smooth_imagesmooth_imageSmoothImageSmoothImagesmooth_image — Smooth an image using various filters.

参数签名

smooth_image(Image : ImageSmooth : Filter, Alpha : )

Herror smooth_image(const Hobject Image, Hobject* ImageSmooth, const char* Filter, double Alpha)

Herror T_smooth_image(const Hobject Image, Hobject* ImageSmooth, const Htuple Filter, const Htuple Alpha)

void SmoothImage(const HObject& Image, HObject* ImageSmooth, const HTuple& Filter, const HTuple& Alpha)

HImage HImage::SmoothImage(const HString& Filter, double Alpha) const

HImage HImage::SmoothImage(const char* Filter, double Alpha) const

HImage HImage::SmoothImage(const wchar_t* Filter, double Alpha) const   ( Windows only)

static void HOperatorSet.SmoothImage(HObject image, out HObject imageSmooth, HTuple filter, HTuple alpha)

HImage HImage.SmoothImage(string filter, double alpha)

def smooth_image(image: HObject, filter: str, alpha: float) -> HObject

描述

smooth_imagesmooth_imageSmoothImageSmoothImageSmoothImagesmooth_image smooths gray images using recursive filters originally developed by Deriche and Shen and using the non-recursive Gaussian filter. The following filters can be chosen via the parameter FilterFilterFilterFilterfilterfilter: 'deriche1', 'deriche2', 'shen' and 'gauss'. The “filter width” (i.e., the range of the filter and thereby result of the filter) can be of any size. In the case that the Deriche or Shen is chosen it decreases by increasing the filter parameter AlphaAlphaAlphaAlphaalphaalpha and increases in the case of the Gauss filter (and AlphaAlphaAlphaAlphaalphaalpha corresponds to the standard deviation of the Gaussian function). An approximation of the appropriate size of the filter width AlphaAlphaAlphaAlphaalphaalpha is performed by 该算子 info_smoothinfo_smoothInfoSmoothInfoSmoothInfoSmoothinfo_smooth.

Non-recursive filters like the Gaussian filter are often implemented using filter-masks. In this case the runtime of 该算子 increases with increasing size of the filter mask. The runtime of the recursive filters remains constant; except the border treatment becomes a little bit more time consuming. The Gaussian filter becomes slow in comparison to the recursive ones but is in contrast to them isotropic (the filter 'deriche2' is only weakly direction sensitive). A comparable result of the smoothing is achieved by choosing the following values for the parameter: Alpha(deriche2) = Alpha(deriche1) / 2, Alpha(shen) = Alpha(deriche1) / 2, Alpha(gauss) = 1.77 / Alpha(deriche1).

For an explanation of the concept of smoothing filters see the introduction of chapter Filters / Smoothing.

注意

Note that filter operators may return unexpected results if an image with a reduced domain is used as input. Please refer to the chapter 过滤器.

运行信息

参数表

ImageImageImageImageimageimage (input_object)  (multichannel-)image(-array) objectHImageHObjectHImageHobject (byte / uint2 / real)

Image to be smoothed.

ImageSmoothImageSmoothImageSmoothImageSmoothimageSmoothimage_smooth (output_object)  (multichannel-)image(-array) objectHImageHObjectHImageHobject * (byte / uint2 / real)

Smoothed image.

FilterFilterFilterFilterfilterfilter (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Filter.

Default: 'deriche2' "deriche2" "deriche2" "deriche2" "deriche2" "deriche2"

List of values: 'deriche1'"deriche1""deriche1""deriche1""deriche1""deriche1", 'deriche2'"deriche2""deriche2""deriche2""deriche2""deriche2", 'gauss'"gauss""gauss""gauss""gauss""gauss", 'shen'"shen""shen""shen""shen""shen"

AlphaAlphaAlphaAlphaalphaalpha (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Filter parameter: small values cause strong smoothing (vice versa by using 'gauss'"gauss""gauss""gauss""gauss""gauss").

Default: 0.5

Suggested values: 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0, 10.0

Minimum increment: 0.01

Recommended increment: 0.1

Restriction: Alpha > 0

例程 (HDevelop)

info_smooth('deriche2',0.5,Size,Coeffs)
smooth_image(Input,Smooth,'deriche2',7)

例程 (C)

info_smooth('deriche2',0.5,Size,Coeffs);
smooth_image(Input,&Smooth,'deriche2',7);

例程 (HDevelop)

info_smooth('deriche2',0.5,Size,Coeffs)
smooth_image(Input,Smooth,'deriche2',7)

例程 (HDevelop)

info_smooth('deriche2',0.5,Size,Coeffs)
smooth_image(Input,Smooth,'deriche2',7)

例程 (HDevelop)

info_smooth('deriche2',0.5,Size,Coeffs)
smooth_image(Input,Smooth,'deriche2',7)

结果

If the parameter values are correct 该算子 smooth_imagesmooth_imageSmoothImageSmoothImageSmoothImagesmooth_image 返回值 2 ( H_MSG_TRUE) . The behavior in case of empty input (no input images available) is set via 该算子 set_system('no_object_result',<Result>)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)set_system("no_object_result",<Result>). If necessary an exception is raised.

可能的前置算子

read_imageread_imageReadImageReadImageReadImageread_image

可能的后置算子

thresholdthresholdThresholdThresholdThresholdthreshold, dyn_thresholddyn_thresholdDynThresholdDynThresholdDynThresholddyn_threshold, regiongrowingregiongrowingRegiongrowingRegiongrowingRegiongrowingregiongrowing

可替代算子

binomial_filterbinomial_filterBinomialFilterBinomialFilterBinomialFilterbinomial_filter, gauss_filtergauss_filterGaussFilterGaussFilterGaussFiltergauss_filter, mean_imagemean_imageMeanImageMeanImageMeanImagemean_image, derivate_gaussderivate_gaussDerivateGaussDerivateGaussDerivateGaussderivate_gauss, isotropic_diffusionisotropic_diffusionIsotropicDiffusionIsotropicDiffusionIsotropicDiffusionisotropic_diffusion

参考其它

info_smoothinfo_smoothInfoSmoothInfoSmoothInfoSmoothinfo_smooth, median_imagemedian_imageMedianImageMedianImageMedianImagemedian_image, sigma_imagesigma_imageSigmaImageSigmaImageSigmaImagesigma_image, anisotropic_diffusionanisotropic_diffusionAnisotropicDiffusionAnisotropicDiffusionAnisotropicDiffusionanisotropic_diffusion

References

R.Deriche: “Fast Algorithms for Low-Level Vision”; IEEE Transactions on Pattern Analysis and Machine Intelligence; PAMI-12, no. 1; S. 78-87; 1990.

模块

Foundation