get_sample_class_svmT_get_sample_class_svmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm (算子名称)
名称
get_sample_class_svmT_get_sample_class_svmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm — Return a training sample from the training data of a support vector
machine.
参数签名
描述
get_sample_class_svmget_sample_class_svmGetSampleClassSvmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm reads out a training sample from the
support vector machine (SVM) given by SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle that was
added with add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm or
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm. The index of the sample is
specified with IndexSampleIndexSampleIndexSampleIndexSampleindexSampleindex_sample. The index is counted from 0,
i.e., IndexSampleIndexSampleIndexSampleIndexSampleindexSampleindex_sample must be a number between 0 and
NumSamplesNumSamplesNumSamplesNumSamplesnumSamplesnum_samples - 1, where NumSamplesNumSamplesNumSamplesNumSamplesnumSamplesnum_samples can be
determined with get_sample_num_class_svmget_sample_num_class_svmGetSampleNumClassSvmGetSampleNumClassSvmGetSampleNumClassSvmget_sample_num_class_svm. The training
sample is returned in 特征特征特征特征特征特征 and TargetTargetTargetTargettargettarget.
特征特征特征特征特征特征 is a feature vector of length
NumFeaturesNumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features (see create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm), while TargetTargetTargetTargettargettarget
is the index of the class, ranging between 0 and NumClassesNumClassesNumClassesNumClassesnumClassesnum_classes-1 (see
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm).
get_sample_class_svmget_sample_class_svmGetSampleClassSvmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm can, for example, be used to reclassify
the training data with classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm in order to
determine which training samples, if any, are classified
incorrectly.
运行信息
- 多线程类型:可重入(与非独占操作符并行运行)。
- 多线程作用域:全局(可以从任何线程调用)。
- 未经并行化处理。
参数表
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (input_control) class_svm → HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
SVM handle.
IndexSampleIndexSampleIndexSampleIndexSampleindexSampleindex_sample (input_control) integer → HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Number of the stored training sample.
特征特征特征特征特征特征 (output_control) real-array → HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Feature vector of the training sample.
TargetTargetTargetTargettargettarget (output_control) integer → HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Target vector of the training sample.
例程 (HDevelop)
* Train an SVM
create_class_svm (NumFeatures, 'rbf', 0.01, 0.01, NumClasses,\
'one-versus-all', 'normalization', NumFeatures,\
SVMHandle)
read_samples_class_svm (SVMHandle, 'samples.mtf')
train_class_svm (SVMHandle, 0.001, 'default')
* Reclassify the training samples
get_sample_num_class_svm (SVMHandle, NumSamples)
for I := 0 to NumSamples-1 by 1
get_sample_class_svm (SVMHandle, I, Data, Target)
classify_class_svm (SVMHandle, Data, 1, Class)
if (Class != Target)
* Sample has been classified incorrectly
endif
endfor
结果
If the parameters are valid 该算子
get_sample_class_svmget_sample_class_svmGetSampleClassSvmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm 返回值 2 (
H_MSG_TRUE)
. If necessary,
an exception is raised.
可能的前置算子
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm,
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm,
get_sample_num_class_svmget_sample_num_class_svmGetSampleNumClassSvmGetSampleNumClassSvmGetSampleNumClassSvmget_sample_num_class_svm,
get_support_vector_class_svmget_support_vector_class_svmGetSupportVectorClassSvmGetSupportVectorClassSvmGetSupportVectorClassSvmget_support_vector_class_svm
可能的后置算子
classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm
参考其它
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
模块
Foundation