add_sample_class_svmT_add_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm (算子名称)
名称
add_sample_class_svmT_add_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm — Add a training sample to the training data of a support vector
machine.
参数签名
Herror T_add_sample_class_svm(const Htuple SVMHandle, const Htuple 特征, const Htuple Class)
def add_sample_class_svm(svmhandle: HHandle, 特征: Sequence[float], class_val: Union[int, float]) -> None
描述
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm adds a training sample to the support
vector machine (SVM) given by SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle. The training
sample is given by 特征特征特征特征特征特征 and ClassClassClassClassclassValclass.
特征特征特征特征特征特征 is the feature vector of the sample, and
consequently must be a real vector of length NumFeaturesNumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features,
as specified in create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm. ClassClassClassClassclassValclass is the
target of the sample, which must be in the range of 0 to
NumClassesNumClassesNumClassesNumClassesnumClassesnum_classes-1 (see create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm). In the special
case of 'novelty-detection'"novelty-detection""novelty-detection""novelty-detection""novelty-detection""novelty-detection" the class is to be set to 0 as
only one class is assumed.
Before the SVM can be trained with
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm, training samples must be added to the
SVM with add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm. The usage of support vectors
of an already trained SVM as training samples is described in
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm.
The number of currently stored training samples can be queried with
get_sample_num_class_svmget_sample_num_class_svmGetSampleNumClassSvmGetSampleNumClassSvmGetSampleNumClassSvmget_sample_num_class_svm. Stored training samples can be
read out again with get_sample_class_svmget_sample_class_svmGetSampleClassSvmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm.
Normally, it is useful to save the training samples in a file with
write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm to facilitate reusing the samples
and to facilitate that, if necessary, new training samples can be
added to the data set, and hence to facilitate that a newly
created SVM can be trained with the extended data set.
运行信息
- 多线程类型:可重入(与非独占操作符并行运行)。
- 多线程作用域:全局(可以从任何线程调用)。
- 未经并行化处理。
This operator modifies the state of the following input parameter:
During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.
参数表
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (input_control, state is modified) class_svm → HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
SVM handle.
特征特征特征特征特征特征 (input_control) real-array → HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Feature vector of the training sample to be stored.
ClassClassClassClassclassValclass (input_control) number → HTupleUnion[int, float]HTupleHtuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)
Class of the training sample to be stored.
结果
If the parameters are valid 该算子
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm 返回值 2 (
H_MSG_TRUE)
. If necessary,
an exception is raised.
可能的前置算子
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
可能的后置算子
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm,
write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm,
get_sample_num_class_svmget_sample_num_class_svmGetSampleNumClassSvmGetSampleNumClassSvmGetSampleNumClassSvmget_sample_num_class_svm,
get_sample_class_svmget_sample_class_svmGetSampleClassSvmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm
可替代算子
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm
参考其它
clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm,
get_support_vector_class_svmget_support_vector_class_svmGetSupportVectorClassSvmGetSupportVectorClassSvmGetSupportVectorClassSvmget_support_vector_class_svm
模块
Foundation