read_samples_class_mlpT_read_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp (算子名称)
名称
read_samples_class_mlpT_read_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp — Read the training data of a multilayer perceptron from a file.
参数签名
描述
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp reads training samples from the file
given by FileNameFileNameFileNameFileNamefileNamefile_name and adds them to the training samples
that have already been added to the multilayer perceptron (MLP)
given by MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle. The MLP must be created with
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp before calling
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp. As described with
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp and write_samples_class_mlpwrite_samples_class_mlpWriteSamplesClassMlpWriteSamplesClassMlpWriteSamplesClassMlpwrite_samples_class_mlp, the
operators read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp,
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp, and write_samples_class_mlpwrite_samples_class_mlpWriteSamplesClassMlpWriteSamplesClassMlpWriteSamplesClassMlpwrite_samples_class_mlp
can be used to build up a extensive set of training samples, and
hence to improve the performance of the MLP by retraining the MLP
with extended data sets.
It should be noted that the training samples must have the correct
dimensionality. The feature vectors and target vectors stored in
FileNameFileNameFileNameFileNamefileNamefile_name must have the lengths NumInputNumInputNumInputNumInputnumInputnum_input and
NumOutputNumOutputNumOutputNumOutputnumOutputnum_output that were specified with
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp. If this is not the case an error message
is returned.
运行信息
- 多线程类型:可重入(与非独占操作符并行运行)。
- 多线程作用域:全局(可以从任何线程调用)。
- 未经并行化处理。
This operator modifies the state of the following input parameter:
During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.
参数表
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle (input_control, state is modified) class_mlp → HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
MLP handle.
FileNameFileNameFileNameFileNamefileNamefile_name (input_control) filename.read → HTuplestrHTupleHtuple (string) (string) (HString) (char*)
File name.
结果
如果参数均有效,算子
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp 返回值 2 (
H_MSG_TRUE)
. If necessary,
an exception is raised.
可能的前置算子
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
可能的后置算子
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp
可替代算子
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
参考其它
write_samples_class_mlpwrite_samples_class_mlpWriteSamplesClassMlpWriteSamplesClassMlpWriteSamplesClassMlpwrite_samples_class_mlp,
clear_samples_class_mlpclear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp
模块
Foundation