mult_matrix — Multiply two matrices.
mult_matrix( : : MatrixAID, MatrixBID, MultType : MatrixMultID)
该算子 mult_matrix computes the product of the input
matrices MatrixA and MatrixB defined by the
matrix handles MatrixAID and MatrixBID. A new
matrix MatrixMult is generated with the result. The
operator returns the matrix handle MatrixMultID of the
matrix MatrixMult. Access to the elements of the matrix
is possible e.g., with 该算子 get_full_matrix. If
desired, one or both input matrices will be transposed for the
multiplication.
The type of multiplication can be selected via MultType:
The matrices MatrixA
and MatrixB will not be transposed. Therefore, the formula
for the calculation of the result is:
The number of columns of the matrix MatrixA must be
identical to the number of rows of the matrix MatrixB.
Example:
The matrix MatrixA
will be transposed. The matrix MatrixB will not be
transposed. Therefore, the formula for the calculation of the
result is:
The number of rows of the matrix MatrixA must be
identical to the number of rows of the matrix MatrixB.
Example:
The matrix MatrixA
will not be transposed. The matrix MatrixB will be
transposed. Therefore, the formula for the calculation of the
result is:
The number of columns of the matrix MatrixA must be
identical to the number of columns of the matrix
MatrixB.
Example:
The matrix MatrixA
and the matrix MatrixB will be transposed. Therefore,
the formula for the calculation of the result is:
The number of rows of the matrix MatrixA must be
identical to the number of columns of the matrix
MatrixB.
Example:
MatrixAID (input_control) matrix → (handle)
Matrix handle of the input matrix A.
MatrixBID (input_control) matrix → (handle)
Matrix handle of the input matrix B.
MultType (input_control) string → (string)
Type of the input matrices.
Default: 'AB'
List of values: 'AB', 'ABT', 'ATB', 'ATBT'
MatrixMultID (output_control) matrix → (handle)
Matrix handle of the multiplied matrices.
如果参数均有效,算子 mult_matrix
返回值 2 (
H_MSG_TRUE)
. 如有必要,将引发异常。
get_full_matrix,
get_value_matrix
mult_element_matrix,
mult_element_matrix_mod,
div_element_matrix,
div_element_matrix_mod,
transpose_matrix,
transpose_matrix_mod
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
Foundation