get_dl_model_layerT_get_dl_model_layerGetDlModelLayerGetDlModelLayerget_dl_model_layer (算子名称)
名称
get_dl_model_layerT_get_dl_model_layerGetDlModelLayerGetDlModelLayerget_dl_model_layer — Create a deep copy of the layers and all
of their graph ancestors in a given deep learning model.
参数签名
描述
该算子 get_dl_model_layerget_dl_model_layerGetDlModelLayerGetDlModelLayerGetDlModelLayerget_dl_model_layer creates a deep copy of every layer
named in LayerNamesLayerNamesLayerNamesLayerNameslayerNameslayer_names and all their
graph ancestors in the deep learning model DLModelHandleDLModelHandleDLModelHandleDLModelHandleDLModelHandledlmodel_handle.
You can retrieve the unique layer names using get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamGetDlModelParamget_dl_model_param with
its option 'summary'"summary""summary""summary""summary""summary".
You might use the output layers returned in DLLayersDLLayersDLLayersDLLayersDLLayersdllayers as inputs to
the create_dl_layer_* and create_dl_modelcreate_dl_modelCreateDlModelCreateDlModelCreateDlModelcreate_dl_model operators in order
to create novel model architectures based on existing models.
If you want to get multiple layers of a single model, these layers have to be
specified as a LayerNamesLayerNamesLayerNamesLayerNameslayerNameslayer_names tuple in a single call to
get_dl_model_layerget_dl_model_layerGetDlModelLayerGetDlModelLayerGetDlModelLayerget_dl_model_layer. Doing so, you avoid multiple deep copies of graph
ancestors that are potentially shared by the layers.
Example:
get_dl_model_layer(DLModelHandleOrig, ['layer_name_3', 'layer_name_6'], DLLayersOutput)get_dl_model_layer(DLModelHandleOrig, ["layer_name_3", "layer_name_6"], DLLayersOutput)GetDlModelLayer(DLModelHandleOrig, ["layer_name_3", "layer_name_6"], DLLayersOutput)GetDlModelLayer(DLModelHandleOrig, ["layer_name_3", "layer_name_6"], DLLayersOutput)GetDlModelLayer(DLModelHandleOrig, ["layer_name_3", "layer_name_6"], DLLayersOutput)get_dl_model_layer(DLModelHandleOrig, ["layer_name_3", "layer_name_6"], DLLayersOutput)
|
create_dl_model([DLLayersOutput], DLModelHandle)create_dl_model([DLLayersOutput], DLModelHandle)CreateDlModel([DLLayersOutput], DLModelHandle)CreateDlModel([DLLayersOutput], DLModelHandle)CreateDlModel([DLLayersOutput], DLModelHandle)create_dl_model([DLLayersOutput], DLModelHandle)
|
Please note, that the output layers are copies. They contain the same weights
and settings as in the given input model but they are unique copies.
You cannot alter the existing model by changing the output layers.
运行信息
- 多线程类型:可重入(与非独占操作符并行运行)。
- 多线程作用域:全局(可以从任何线程调用)。
- 未经并行化处理。
This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even though the handle is used as an input parameter by those operators.
参数表
DLModelHandleDLModelHandleDLModelHandleDLModelHandleDLModelHandledlmodel_handle (input_control) dl_model → HDlModel, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Deep learning model.
LayerNamesLayerNamesLayerNamesLayerNameslayerNameslayer_names (input_control) string(-array) → HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)
Names of the layers to be copied.
DLLayersDLLayersDLLayersDLLayersDLLayersdllayers (output_control) dl_layer(-array) → HDlLayer, HTupleSequence[HHandle]HTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Copies of layers and all of their ancestors.
可能的前置算子
read_dl_modelread_dl_modelReadDlModelReadDlModelReadDlModelread_dl_model
可能的后置算子
create_dl_modelcreate_dl_modelCreateDlModelCreateDlModelCreateDlModelcreate_dl_model,
create_dl_layer_activationcreate_dl_layer_activationCreateDlLayerActivationCreateDlLayerActivationCreateDlLayerActivationcreate_dl_layer_activation,
create_dl_layer_batch_normalizationcreate_dl_layer_batch_normalizationCreateDlLayerBatchNormalizationCreateDlLayerBatchNormalizationCreateDlLayerBatchNormalizationcreate_dl_layer_batch_normalization,
create_dl_layer_class_id_conversioncreate_dl_layer_class_id_conversionCreateDlLayerClassIdConversionCreateDlLayerClassIdConversionCreateDlLayerClassIdConversioncreate_dl_layer_class_id_conversion,
create_dl_layer_class_id_conversioncreate_dl_layer_class_id_conversionCreateDlLayerClassIdConversionCreateDlLayerClassIdConversionCreateDlLayerClassIdConversioncreate_dl_layer_class_id_conversion,
create_dl_layer_concatcreate_dl_layer_concatCreateDlLayerConcatCreateDlLayerConcatCreateDlLayerConcatcreate_dl_layer_concat,
create_dl_layer_convolutioncreate_dl_layer_convolutionCreateDlLayerConvolutionCreateDlLayerConvolutionCreateDlLayerConvolutioncreate_dl_layer_convolution,
create_dl_layer_densecreate_dl_layer_denseCreateDlLayerDenseCreateDlLayerDenseCreateDlLayerDensecreate_dl_layer_dense,
create_dl_layer_depth_maxcreate_dl_layer_depth_maxCreateDlLayerDepthMaxCreateDlLayerDepthMaxCreateDlLayerDepthMaxcreate_dl_layer_depth_max,
create_dl_layer_dropoutcreate_dl_layer_dropoutCreateDlLayerDropoutCreateDlLayerDropoutCreateDlLayerDropoutcreate_dl_layer_dropout,
create_dl_layer_elementwisecreate_dl_layer_elementwiseCreateDlLayerElementwiseCreateDlLayerElementwiseCreateDlLayerElementwisecreate_dl_layer_elementwise,
create_dl_layer_loss_cross_entropycreate_dl_layer_loss_cross_entropyCreateDlLayerLossCrossEntropyCreateDlLayerLossCrossEntropyCreateDlLayerLossCrossEntropycreate_dl_layer_loss_cross_entropy,
create_dl_layer_loss_ctccreate_dl_layer_loss_ctcCreateDlLayerLossCtcCreateDlLayerLossCtcCreateDlLayerLossCtccreate_dl_layer_loss_ctc,
create_dl_layer_loss_distancecreate_dl_layer_loss_distanceCreateDlLayerLossDistanceCreateDlLayerLossDistanceCreateDlLayerLossDistancecreate_dl_layer_loss_distance,
create_dl_layer_loss_focalcreate_dl_layer_loss_focalCreateDlLayerLossFocalCreateDlLayerLossFocalCreateDlLayerLossFocalcreate_dl_layer_loss_focal,
create_dl_layer_loss_hubercreate_dl_layer_loss_huberCreateDlLayerLossHuberCreateDlLayerLossHuberCreateDlLayerLossHubercreate_dl_layer_loss_huber,
create_dl_layer_lrncreate_dl_layer_lrnCreateDlLayerLrnCreateDlLayerLrnCreateDlLayerLrncreate_dl_layer_lrn,
create_dl_layer_poolingcreate_dl_layer_poolingCreateDlLayerPoolingCreateDlLayerPoolingCreateDlLayerPoolingcreate_dl_layer_pooling,
create_dl_layer_reshapecreate_dl_layer_reshapeCreateDlLayerReshapeCreateDlLayerReshapeCreateDlLayerReshapecreate_dl_layer_reshape,
create_dl_layer_softmaxcreate_dl_layer_softmaxCreateDlLayerSoftmaxCreateDlLayerSoftmaxCreateDlLayerSoftmaxcreate_dl_layer_softmax,
create_dl_layer_transposed_convolutioncreate_dl_layer_transposed_convolutionCreateDlLayerTransposedConvolutionCreateDlLayerTransposedConvolutionCreateDlLayerTransposedConvolutioncreate_dl_layer_transposed_convolution,
create_dl_layer_zoom_factorcreate_dl_layer_zoom_factorCreateDlLayerZoomFactorCreateDlLayerZoomFactorCreateDlLayerZoomFactorcreate_dl_layer_zoom_factor,
create_dl_layer_zoom_sizecreate_dl_layer_zoom_sizeCreateDlLayerZoomSizeCreateDlLayerZoomSizeCreateDlLayerZoomSizecreate_dl_layer_zoom_size,
create_dl_layer_zoom_to_layer_sizecreate_dl_layer_zoom_to_layer_sizeCreateDlLayerZoomToLayerSizeCreateDlLayerZoomToLayerSizeCreateDlLayerZoomToLayerSizecreate_dl_layer_zoom_to_layer_size
模块
Deep Learning Training