add_sample_class_knnT_add_sample_class_knnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn (算子名称)

名称

add_sample_class_knnT_add_sample_class_knnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn — Add a sample to a K-最近邻 (k-NN) classifier.

参数签名

add_sample_class_knn( : : KNNHandle, 特征, ClassID : )

Herror T_add_sample_class_knn(const Htuple KNNHandle, const Htuple 特征, const Htuple ClassID)

void AddSampleClassKnn(const HTuple& KNNHandle, const HTuple& 特征, const HTuple& ClassID)

void HClassKnn::AddSampleClassKnn(const HTuple& 特征, const HTuple& ClassID) const

void HClassKnn::AddSampleClassKnn(double 特征, Hlong ClassID) const

static void HOperatorSet.AddSampleClassKnn(HTuple KNNHandle, HTuple 特征, HTuple classID)

void HClassKnn.AddSampleClassKnn(HTuple 特征, HTuple classID)

void HClassKnn.AddSampleClassKnn(double 特征, int classID)

def add_sample_class_knn(knnhandle: HHandle, 特征: MaybeSequence[float], class_id: MaybeSequence[int]) -> None

描述

add_sample_class_knnadd_sample_class_knnAddSampleClassKnnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn adds a feature vector to a K-最近邻 (k-NN) data structure. The length of a feature vector was specified in create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn by NumDimNumDimNumDimNumDimnumDimnum_dim. A handle to a k-NN data structure has to be specified in KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle.

The feature vectors are collected in 特征特征特征特征特征特征. The length of the input vector must be a multiple of NumDimNumDimNumDimNumDimnumDimnum_dim. Each feature vector needs a class which can be given by ClassIDClassIDClassIDClassIDclassIDclass_id, if only one was specified, the class is used for all vectors. The class is a natural number greater or equal to 0. If only one class is used, the class has to be 0. In case 该算子 classify_image_class_knnclassify_image_class_knnClassifyImageClassKnnClassifyImageClassKnnClassifyImageClassKnnclassify_image_class_knn will be used, all numbers starting from 0 to the number of classes-1 should be used, since otherwise an empty region will be generated for each unused number.

It is allowed to add samples to an already trained k-NN classificator. The new data is only integrated after another call to train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn.

If the k-NN classifier has been trained with automatic feature normalization enabled, the supplied features 特征特征特征特征特征特征 are interpreted as unnormalized and are normalized as it was defined by the last call to train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn. Please see train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn for more information on normalization.

运行信息

This operator modifies the state of the following input parameter:

During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.

参数表

KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle (input_control, state is modified)  class_knn HClassKnn, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Handle of the k-NN classifier.

特征特征特征特征特征特征 (input_control)  number(-array) HTupleMaybeSequence[float]HTupleHtuple (real) (double) (double) (double)

List of features to add.

ClassIDClassIDClassIDClassIDclassIDclass_id (input_control)  integer(-array) HTupleMaybeSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Class IDs of the features.

结果

如果参数均有效,算子 add_sample_class_knnadd_sample_class_knnAddSampleClassKnnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn 返回值 2 ( H_MSG_TRUE) . 如有必要,将引发异常。

可能的前置算子

train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn, read_class_knnread_class_knnReadClassKnnReadClassKnnReadClassKnnread_class_knn

参考其它

create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn, read_class_knnread_class_knnReadClassKnnReadClassKnnReadClassKnnread_class_knn

References

Marius Muja, David G. Lowe: “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration”; International Conference on Computer Vision Theory and Applications (VISAPP 09); 2009.

模块

Foundation